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Abstract. In this work we propose a novel person re-identification ap-
proach. The solution, inspired by human gazing capabilities, wants to
identify the salient regions of a given person. Such regions are used as
a weighting tool in the image feature extraction process. Then, such
novel representation is combined with a set of other visual features in a
pairwise-based multiple metric learning framework. Finally, the learned
metrics are fused to get the distance between image pairs and to re-
identify a person. The proposed method is evaluated on three different
benchmark datasets and compared with best state-of-the-art approaches
to show its overall superior performance.

1 Introduction

The person re-identification problem, i.e. identifying an individual across non-
overlapping camera views, is becoming one of the most interesting tasks in com-
puter vision. Many different applications, such as situational awareness [40],
wide area scene analysis [39], etc. would benefit from it. This is supported by
the relevant number of works presented by the community [46, 7].

The person re-identification problem is challenging due to different issues like
variations on viewpoints and illumination conditions as well as persons poses and
appearances. The non-rigid shape of the human body, background clutter and
occlusions contribute to make the task non-trivial.

The computer vision community is addressing person re-identification by
proposing both biometric-based (e.g. [52, 17, 45, 32]) and appearance-based meth-
ods (e.g. [25, 49, 43, 31]). Biometric-based methods exploit characteristic features
(e.g. gait, face, etc.) of the person that are invariant in time but require a precise
setup of the sensors (e.g. lateral or frontal view with relatively high spatial res-
olution). On the other hand, features extracted by appearance-based methods
carry information about the appearance (i.e. clothes, carried on objects, etc.)
which invariance is limited in time. But, these methods do not require a specific
sensors configuration and deployment thus they are more suitable in context of
wide area camera networks.

Solutions in the literature for re-identification can be further organized in
three categories: (i) Discriminative signature based methods (e.g. [17, 25, 29, 33])
exploit human-defined person models that are matched using distance measures
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like L2, χ2, etc., or a combination of those. (ii) Features transformation based
methods compute linear [14] and nonlinear [45, 23, 9, 10] transformation functions
that are used to project features between different camera-dependent spaces.
(iii) Metric learning based algorithms (e.g. [32, 49, 43, 24]) learn non-Euclidean
distances that are used for the classification phase.
Motivation: Our solution builds upon three main considerations about the
limits of current approaches:

– Most of the existing works compute the signature either directly from the
whole image or silhouette, or by fusing local features extracted from dense
image patches. This way each point of the person has the same importance in
the computation of the signature. As [51, 50] we believe that the importance
of the points is not uniform.

– Assuming we can compute the importance of points, it is not guaranteed
that the same point is captured by all different views.

– Feature transformation functions are both highly non-linear [23, 9, 10] and
depending on the class of the features, i.e., every feature transformation is
modeled by a different function.

Contribution: We propose an approach that introduces three main novelties:

– A new kernelized graph-based technique to compute the importance of the
points on the person, i.e., the saliency.

– The computed saliency is used as a weight in the feature extraction process:
the higher the “saliency” the higher the importance of the feature for the
re-identification and vice versa. This is combined with a set of local features
to reduce the dependence on the saliency.

– A pairwise multiple metric learning framework used to model each feature
space separately rather than jointly.

2 Related Work

Discriminative signature based methods seek for highly distinctive representa-
tions to describe a person’s appearance under varying conditions. In [13], a
region-based segmented image was used to extract spatio-temporal local features
from multiple consecutive frames. In [12], a 2D rigid part based color appearance
model was used to localize and match individuals in 3D system computed by
means of the structure-from-motion technique. In [8, 6, 30, 36, 37], multiple local
features were used to compute discriminative signatures for each person using
multiple images. In [48], frames were used to build a collaborative representation
that best approximates the query frames. In [4], Mean Riemannian Covariance
patches extracted from individuals were used in a boosting scheme. In [25], re-
identification was performed by matching shape descriptors of color distributions
projected in the log-chromaticity space. In [51], an adjacency constrained patch
matching strategy based on an unsupervised salient feature learning framework
was used to improve re-identification accuracy. In [1], similarity with a reference
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set of persons was used in a Regularized Canonical Correlation Analysis frame-
work. In [33], Biologically Inspired Features and covariance descriptors were used
to compute the similarity between person images.

These methods addressed the problem by using human-defined person rep-
resentations that are distinctive under changing conditions between different
cameras. However, the exploited visual features are not be invariant to every
variation that may affect the images acquired by disjoint cameras.

Features transformation based methods have addressed the re-identification
problem by finding the transformation functions that affect the visual features
acquired by disjoint cameras. In [23], a learned subspace of the computed bright-
ness transfer function (BTF) between the appearance features was used to match
persons across camera pairs. An incremental learning framework to model linear
color variations between cameras has been proposed in [14]. In [9], the BTF was
used to compensate the color difference between camera views. Tangent transfer
functions derived by the homography between two cameras were also exploited
to compensate the perspective difference. Usually the modeled functions are used
to transform the feature space of one camera to the feature space of the other
one. The re-identification then is performed in the so transformed feature space.
Only recently, a few methods [2, 27, 38, 35] had also considered the fact that the
transformation is not unique and it depends on several factors.

Metric learning based algorithms lie in between the two above categories
as they still rely on particular features but they also advantage of a training
phase to learn non-Euclidean distances used to compute the match in a different
feature space. In [20], a relaxation of the positivity constraint of the Mahalanobis
metric was proposed. In [11], unfamiliar matches were given less importance
in the optimization problem in a Large Margin Nearest Neighbor framework.
Multiple metrics specific to different candidate sets were learned in a transfer
learning set up in [28]. In [49], the re-identification problem was formulated as
a local distance comparison problem introducing an energy-based loss function
that measures the similarity between appearance instances. In [24], a metric just
based on equivalence constraints was learned. In [43], regularized Local Fisher
Discriminant Analysis was introduced to maximize the between-class separability
and preserve multi-class modality. In [31], it has been shown that user feedback
solicited on-the-fly during the deployment stage for re-ranking boosts the re-
identification performance over metric learning methods.

Recently, human saliency has also been explored in [51, 50]. However, in [51,
50] a reference set has been used, and, as claimed by the authors, the reference
set is robust as long as its distribution well reflects the test scenario. To avoid
this, we consider only neighborhood of pixels to compute the saliency. This
brings three main benefits: (a) no need to find the best reference set for each
context; (b) performance are not dependent from the reference set; (c) lower
computational costs.
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Fig. 1. Proposed system architecture based on five main stages: kernelized saliency
computation, feature extraction, dimensionality reduction, multiple metric learning
and distance fusion.

3 The Approach

As shown in Fig. 1, the proposed re-identification approach consists of five
phases: (1) kernelized saliency computation, (2) feature extraction, (3) dimen-
sionality reduction, (4) multiple metric learning, and (5) distance fusion.

During training each image is given to the kernelized saliency detection mod-
ule to compute the saliency of each pixel, i.e. a saliency map. Then, both the
saliency map and the image are split into patches that are given to the feature
extraction module. This module exploits the saliency as a weighting tool for the
feature computation. Four different kind of features are extracted from all the
patches and for each color component of the selected color spaces. Features of
the same kind, extracted from the same color space, are concatenated and input
to the dimensionality reduction module that applies Principal Component Anal-
ysis (PCA). Finally, the whole training set of PCA reduced features is given to
the multiple metric learning module. This is in charge to learn a separate metric
between two cameras for each feature type and color space.

During the re-identification phase, the same reduced representation com-
puted for images coming from disjoint cameras, is given to the distance fusion
module together with the learned metrics to compute the final dissimilarity.

3.1 Kernelized Saliency

Using our visual sensing field we are able to focus our limited perceptual and
cognitive resources on the most pertinent subset of the available sensory data.
We usually tell that a portion of the image is “salient” if it is “different” from
its surroundings. However, being our goal to re-identify a target across disjoint
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cameras we have to deal with background clutter that may induce state-of-
the-art saliency detection algorithms [22, 3, 47, 21, 44, 15, 26] to label “salient” a
background region. But, we want only points on the person’s silhouette to have
high saliency.

Let I ∈ Rm×n be the image of a person and let assume that the silhouette
stands somewhere in the center of it. Then, given a feature map F ∈ Rm×n we
want to compute an activation map A ∈ Rm×n such that features at coordinates
(x, y), denoted as F(x,y), which are “different” in their neighborhood and are
close to the center of the image lead to high values of A(x,y).

To achieve such objective the graph-based algorithm in [18] has been ex-
tended as follows. A fully-connected directed graph GA is built by connecting
every node (x, y) of F with all the other ones. The weight of each directed edge
from node (x, y) to (p, q) is computed as

w((x, y), (p, q))A =

∣∣∣∣log

(
F(x,y)

F(p,q)

)∣∣∣∣KF

(
[x, y]T , [p, q]T

)
(1)

where we have taken the standard definition of dissimilarity between the two
feature values and weighted it by a kernel function KF computed between the
node locations. Once GA has been computed, a Markov chain is defined over it
in such a way that its equilibrium distribution accumulates mass at nodes that
have high dissimilarities with their surroundings.

However, considering a single feature map F only limits the generality of the
activation map. On the other hand, if multiple A’s are computed we need to
finally combine them into a single master activation map. This can be trivially
solved using an additive combination. But, if each single activation map does
not have similar mass at closer nodes, we may end up with a uniform and un-
informative master map. Thus another fully connected graph GÂ is computed
to concentrate the mass of each A’s into nodes with high activation values. Let
the weight between two nodes (x, y) and (p, q) be computed as

w((x, y), (p, q))Â = A(p,q)KA

(
[x, y]T , [p, q]T

)
(2)

where, as before, KA is a kernel function. By defining a Markov chain over
GÂ and normalizing the outbound edges to unity we can find the equilibrium
distribution. As a result of this, we have that each concentrated activation map
Â has most of the mass around nodes of A that have high activation values.

Now, let Âj be the j-th activation map computed related to the Fj feature
map, for j = 1, 2, . . . , J . The final saliency map is defined as Ω =

∑J
j=1 αjÂ

j

where α is a vector of weights.
Three important characteristics have been achieved by introducing the kernel

function in the above formulation: (i) the approach proposed in [18] has been
generalized such that any kernel can be used to control the weight of the two
graphs edges; (ii) the weight of the edge from node (x, y) to node (p, q) is kept
proportional to their dissimilarity and to their closeness in the domain of F;
(iii) on average, nodes closer to the center have higher activation values than
any particular point along the image boundaries. This means that lower mass is
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assigned to the nodes that will most probably belong to the background, which
is compliant to the assumption that the person silhouette somehow lies in the
middle of the image.

3.2 Feature Extraction and Dimensionality Reduction

In the previous sections we introduced the idea that the points of a person’s
silhouette have different importance. However, it is not guaranteed that a very
salient point acquired by a camera maintains the same property in a different
camera (e.g. occluded point, change of pose, etc.). Nevertheless, if the same
point is viewed by the two cameras and maintains the saliency properties then,
it probably represents a good point in the re-identification process. To deal with
both cases the saliency is used as a weight for a subset of features while the
others are computed independently from the saliency.

As most state-of-the-algorithm methods the color, shape and texture features
are considered in the proposed work. Before extracting such features, the RGB
image I is projected into each color space S ∈ {HSV ,Lab, Y UV , rgs1}. Then,
the resulting image color channels I(c), c = 1, . . . , 12, and the saliency map Ω are
divided into a set of k patches of equal size denoted P(i,c) and W(i) respectively,
where i = 1, . . . , k denotes the patch index.

For each patch i and color channel c the following features are extracted: (a)
the saliency weighted color histogram ω computed as

ωl,u(i,c) =
∑

(x,y)∈P(i,c)

{
W(i,x,y) if l < P(i,c,x,y) ≤ u
0 otherwise

(3)

where W(i,x,y) and P(i,c,x,y) are the saliency value and the pixel value at loca-
tion (x, y) of patch i and color channel c. l and u are the lower and upper bin
limits. (b) the color mean µ and (c) the 128-dimensional SIFT descriptor ψ.
We also compute (d) the Local Binary Pattern (LBP) [42] γ from a grayscale
representation of each patch i. Features of the same type extracted from all the
k patches belonging to the same color space S are finally concatenated to get
the corresponding feature vectors x(ω,S), x(µ,S), x(ψ,S) and x(γ,gray).

Notice that the saliency weight has been used in the extraction of histogram
features only. This is due to the following reason. If we consider the task of re-
identify a target across disjoint cameras, we are not guaranteed that a particular
object/image region that has been assigned high saliency by one camera is visible
by a different one. That is, we cannot rely on features extracted from those
regions only to re-identify the target. Hence, we decided to weight only histogram
features to balance this issue.

Due to the patch division the resulting feature vectors can be very high di-
mensional and each component may not have the same discriminative power.
Principal Component Analysis is applied to each feature vector separately to
get the vector of PCA coefficients x̂(f,S) where f ∈ {ω, µ, ψ, γ} denotes the

1 r = R/(R + G + B), g = G/(R + G + B), s = (R + G + B)/3
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feature type. To ease the notation, here and in the following, we use S ∈
{HSV ,Lab, Y UV , rgs, gray}. Notice that, while ω, µ and ψ are extracted from
all the four selected color space, γ is computed only in the grayscale domain.

3.3 Multiple Metric Learning and Distance Fusion

For re-identification tasks, the input to metric learning algorithms is generally
given by a vector representation of the image formed by concatenating multi-
ple features (e.g. [49, 43, 24, 20]). Existing approaches have not considered that
different kinds of features extracted from disjoint cameras may not be modeled
by the same transformation function. The joint feature space may also be too
complex to be robustly handled by a single metric. So, we propose to model each
feature space separately. While any metric learning may be a suitable choice, in
this work we exploit the algorithm proposed in [24] as it has no parameters that
need to be optimized. We will introduce it briefly and show how the learned
metrics can be fused to get the final dissimilarity.

The idea is to exploit statistical inference to find the optimal decision to
establish whether a pair of features is dissimilar or not. This is achieved by
setting the problem as a likelihood ratio test. As suggested in [24], by assuming
that the feature space of pairwise differences is governed by a normal distribution
(with zero mean) we can write the ration test as

δ
(A,B)
(f,S) = log

N
(
x̂A(f,S) − x̂B(f,S),0,Σ(A,B)=0

)
N
(
x̂A(f,S) − x̂B(f,S),0,Σ(A,B)=1

)
 (4)

where Σ(A,B)=1 and Σ(A,B)=0 are the sum of outer products computed for all
the pairwise feature differences, x̂A(f,S) − x̂B(f,S), that respectively belongs to the
same person or to a different one.

Now, by taking the log of eq.(4) and discarding the constant terms that
provide an offset, we can learn the Mahalanobis metric M(f,S) by clipping the

spectrum of M̂(f,S) = (Σ−1(A,B)=1 −Σ−1(A,B)=0) computed through eigenanalysis.

Then, the Mahalanobis distance metric between the feature f extracted from
the color space S of the images IA and IB is given by

d2(f,S)(I
A, IB) =

(
x̂A(f,S) − x̂B(f,S)

)T
M(f,S)

(
x̂A(f,S) − x̂B(f,S)

)
. (5)

The learned Mahalanobis distance metrics can then be fused to compute the
final distance between person A and person B as

D(IA, IB) =
∑
f

∑
S

β(f,S)d
2
(f,s)(I

A, IB) (6)

where β(f,S) is a vector of distance weights.
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3.4 Multiple Shot Extension

The re-identification community assumes that two sets of pedestrian images are
available: the gallery set G (for which labels are known) and the probe set T (the
set of pedestrians we want to re-identify). Let N be the number of images of each
person in the two sets. Dependently on the value of N two matching philosophies
are identified: i) single-shot (N = 1); ii) multiple-shot (N > 1). To extend our
method to the multiple-shot scenario we take each feature f extracted from
the color space S on N observations of a same person and pool them (mean
operator). The reason for doing this is that the average of all observations is
likely to be an estimate of the centroid for all samples and hence should be a
valuable representation for each person.

4 Experimental Results

We evaluated our approach on three publicly available benchmark datasets: the
VIPeR dataset [16], the 3DPeS dataset [5] and the CHUK02 dataset [28]. We
chose these datasets as they provide many challenges faced in real world scenar-
ios, i.e., viewpoint, pose and illumination changes, different backgrounds, image
resolutions, occlusions, etc. More details about each dataset are discussed below.

Evaluation Criteria: We report the results for both a single-shot strategy
and a multiple-shot strategy. All the results are shown in terms of recognition
rate by the Cumulative Matching Characteristic (CMC) curve and normalized
Area Under Curve (nAUC) values. The CMC curve is a plot of the recognition
performance versus the rank score and represents the expectation of finding the
correct match inside top k matches. On the other hand, the nAUC describes
how well a method performs irrespectively of the dataset size. For each dataset,
the evaluation procedure is repeated 10 times using independent random splits.

Implementation Details: To compute and fuse the saliency maps of an image
we have taken the same settings in [18] and set both the kernel function KF and
KA to be the standard Radial Basis Function with free parameter σ = 1. Each
element of α has been set to 1. We have sampled image patches of size 8×16 with
a stride of 8× 8 pixels to compute the weighted color histograms, each with 24
bins per channel. Similarly we have taken image patches of size 8×16 with a stride
of 4 × 8 to compute the color mean and the LBP features. SIFT features have
been extracted from 50% overlapping patches of size 16×16. Features have been
reduced to 24, 46, 23, 21, 33, 33, 33, 33, 40, 26, 50, 34, 40 dimensions. First 4 values
are for histograms, second 4 are for the color means and the next 4 are for SIFT
features extracted from the HSV (1st, 5th and 9th values), Lab (2nd, 6th and
10th values), YUV and rgs color spaces. Last value is for LBP features. Similarly,
we set β = [0.06, 0.06, 0.01, 0.1, 0.1, 0.1, 0.1, 0.08, 0.02, 0.05, 0.1, 0.1, 0.1]. All the
parameters have been selected by 4-fold cross validation. Notice that, while these
may have been separately estimated for each dataset, we have taken their average
to provide a more general framework.
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Fig. 2. 15 image pairs from the VIPeR dataset. The two rows show the different ap-
pearances of the same person viewed by two disjoint cameras.

4.1 VIPeR Dataset2

The VIPeR dataset [16] is one of the most challenging datasets for person re-
identification due to the changes in illumination and pose, and the low spatial
resolution of images. This dataset contains images of 632 persons viewed by
two different cameras in an outdoor environment. Most of the image pairs show
viewpoint changes larger than 90 degrees (see Fig. 2). To evaluate our method
we followed the common protocol [43, 51, 1, 20] resizing all the images to 48×128.

Table 1. Comparison with state-of-the-art methods on the VIPeR dataset. Best results
for each rank are in boldface font. (∗) Only results reported to 2 rounded digits are
available. (∗∗) The best run was reported, which cannot be directly compared to the
other results.

Rank → 1 10 20 50 100 nAUC

Proposed 32.97 75.63 86.87 96.17 98.96 0.9701
SalMatch [50] 30.16 65.54 79.15 91.49 98.10 0.9542
RCCA(∗) [1] 30 75 87 96 99 0.9682
LAFT [27] 29.60 69.30 81.34 96.80 - -
RPLM(∗) [20] 27 69 83 95 99 0.9625
PatMatch [50] 26.90 62.34 75.63 90.51 97.47 0.9496
eSDC.ocsvm [51] 26.74 62.37 76.36 - - -
eSDC.knn [51] 26.31 58.86 72.77 - - -
LF [43] 24.18 67.12 81.38 94.12 - -
eLDFV [34] 22.34 60.04 71.00 88.92 99 0.9447
IBML(∗) [19] 22 63 78 93 98 0.9516
CPS [8] 21.84 57.21 71.00 88.10 91.77 0.9360
eBiCOV [33] 20.66 56.18 68.00 84.90 88.66 0.9105
LMNN-R(∗∗) [11] 20 68 80 93 99 0.9572

In Table 1 we compare our results to the state-of-the-art methods. Here we
considered the scenario where half of the dataset is used for training and the
remaining half is used for re-identification 3. As shown, our method achieves the

2 Available at http://soe.ucsc.edu/~dgray/
3 Notice that some approaches are not using any training data as they’re discriminative

signature based methods (e.g. CPS [8], eBiCOV [33], etc.).



10 Niki Martinel, Christian Micheloni and Gian Luca Foresti

2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

90

Rank Score

R
e

co
g

n
iti

o
n

 P
e

rc
e

n
ta

g
e

Cumulative Matching Characteristic

 

 

PatMatch (0.9496)

SalMatch (0.9542)
LAFT (0.9616)

RPLM (0.9625)

RCCA (0.9682)
Proposed (0.9701)

Proposed − Joint (0.90579)

(a)

5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

90

100

Rank Score

R
e

co
g

n
iti

o
n

 P
e

rc
e

n
ta

g
e

Cumulative Matching Characteristic

 

 

Test Set Size = 316 (0.9701)
Test Set Size = 432 (0.96592)

Test Set Size = 512 (0.95091)
Test Set Size = 532 (0.93903)

(b)

Fig. 3. Results on the VIPeR dataset reported as averaged CMC curves. In (a) com-
parisons with state-of-the-art methods are shown. In (b) results are shown as a function
of the test set size.

highest rank 1 score by reaching a recognition rate of 32.97% thus outperforming
very recent and more complicated methods like SalMatch [50], RCCA [1] and
LAFT [27]. We outperform the second runner up by more than 2.8%, which is
a very important result on this dataset. From rank 1 to 10 we outperform all
other methods by more than 6%. RCCA [1] is the only one, that, as our method,
achieves a recognition percentage higher than 70% at rank 10. More interestingly,
SalMatch [50], that has the second highest rank 1 score, achieves a recognition
percentage of 65.54% for the same rank. For higher ranks (50 and 100) our
method has very similar performance to the recent state-of-the-art methods. In
general we achieve the best overall performance with an nAUC value of 0.9701.

In Fig. 3(a) we show the comparison of our method to the five top rank 1
approaches in terms of CMC curves. We also show that learning multiple metrics
enables us to achieve better performance than learning a single metric for the
joint feature space (black curve). To obtain the such result all the features have
been concatenated, then PCA has been applied to reduce the feature space di-
mensions to 79 (best results found by cross-validation). At rank 10 a recognition
rate of 75.63% is achieved by learning multiple metrics, while, concatenating
the same features in a single vector and learning only one metric results in a
recognition percentage of 42.16%.

In Fig. 3(b) we report the results of our method on the VIPeR dataset using
different test set sizes. In Table 2, we also compare our method with RCCA [1],
RPLM [20], PRDC [53], MCC [53], LAFT [27] and PCCA [41]. When the test set
size contains 432 individuals we have the best performance on all the reported
ranks. In particular we outperform the second runner up by more than 2.5%
at rank 1 and by more than 7% when the considered rank is either 10 or 20.
The same applies when the test set contains 512 individuals. We outperform all
existing methods by more than 10% for rank 10 and 20. Finally, if we consider
532 persons as the test set, we achieve lower performance than RCCA [1] at rank
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Table 2. Comparisons on the VIPeR dataset. Recognition rates per rank score as a
function of the test set size.

Test Set Size 432 512 532
Rank → 1 10 20 1 5 10 20 1 10 20

Proposed 24.72 66.29 82.70 14.77 38.06 53.29 68.32 10.67 45.46 65.95
RCCA [1] 22 59 75 - - - - 15 47 60
RPLM [20] 20 56 71 - - - - 11 38 52
PRDC [53] 13 44 60 9.12 24.19 34.40 48.55 9 34 49
MCC [53] - - - 5.00 16.32 25.92 39.64 - - -
LAFT [27] - - - 12.90 30.30 42.73 58.02 - - -
PCCA [41] - - - 9.27 24.89 37.43 52.89 - - -

Fig. 4. 15 image pairs from the 3DPeS dataset. The two rows show the different ap-
pearances of the same person viewed by two disjoint cameras.

1. For higher ranks we achieve similar and superior performance than it and all
other methods.

4.2 3DPeS Dataset4

The 3DPeS dataset [5] contains different sequences of 191 people taken from a
multi-camera distributed surveillance system. There are 8 outdoor cameras and
each one is presented with different light conditions and calibration parameters,
so the persons were detected multiple times with different viewpoints. They were
also captured at different time instants during the course of different days, in
clear light and in shadowy areas. This results in a challenging dataset with strong
variation of light conditions (see Fig. 4).

We compare our results to the ones reported in [43]. However, as in [43] no
much details were given about how the results had been computed, we follow a
similar approach to the one used in the VIPeR dataset and resize all the images
to 48 × 128 pixels. As this dataset comes with more than a single image per
person per camera, we considered that all images have been used to compute
the results in [43]. Then, as in [43] we randomly split the dataset into a training
set and a test set containing 95 persons each.

In Fig. 5(a) we report the comparison of our method to three state-of-the-
art approaches, namely LF [43], KISSME [24] and LMNN-R [11]. Our method
achieves superior performance than all the others ones for ranks from 1 to 20.

4 Available at www.openvisor.org
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Fig. 5. Results on the 3DPeS dataset reported as averaged CMC curves. In (a) we
compare our results to state-of-the-art methods: LF [43], KISSME [24] and LMNN-
R [11]. In (b) we show the performance as a function of the number of shots used
during both the training and the re-identification phase.

Table 3. Comparison of the proposed method on the 3DPeS dataset. Best results are
in boldface font.

Rank → 1 10 25 50 nAUC

Proposed 40.74 73.58 84.64 94.90 0.8928
LF [43] 33.43 69.98 84.80 95.07 0.8870
KISSME [24] 22.94 62.21 80.74 93.21 0.8582
LMNN-R [11] 23.03 55.23 73.44 88.92 0.8191

In particular at rank 1 we achieve a correct recognition rate of 40.74% while,
LF [43], KISSME [24] and LMNN-R [11] achieve a recognition rate of 33.43%,
22.94% and 23.03% respectively.

In Table 3 we report the comparison only for a subset of all the possible rank
values. As shown, for lower ranks, our method outperforms the others. For higher
ones, similar performance to LF [43] are achieved. Notice that the difference in
performance for ranks 25 and 50 is less than 0.2%. As for the VIPeR dataset we
reach the best overall performance with an nAUC value of 0.8928.

As the 3DPeS dataset comes with multiple images of the same pedestrian, in
Fig. 5(b) we report the performance of our method as a function of N . In partic-
ular, as not all the persons come with an equal number of images, if the selected
value of N is higher than the actual number of available images we take the maxi-
mum allowable number of images for that person. As shown in Fig. 5(b) when the
single shot approach is considered (N = 1), our method achieves a recognition
percentage of 19.05% at rank 1 and a recognition percentage of 73.68% when the
considered rank is 20. At this rank our method outperforms LMNN-R [11] and
meets the performance of KISSME [24] which have a recognition rate of 68.95%
and 76.54% respectively. For these results LMNN-R [11] and KISSME [24] re-
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Fig. 6. 15 image pairs from the CUHK02 dataset. The two rows show the different
appearances of the same person viewed by two disjoint cameras.

quire to use all the available images while we use a single one. Considering a
multiple-shot modality, our method keeps constant the performance either using
N = 2, N = 3 or all the available images. This is confirmed by the fact that the
reported nAUC values change by less than 0.07 among all the three cases. How-
ever, by considering N = 3 (or all the available images) the rank 1 performance
increases of about 6% with respect to the N = 2 scenario.

4.3 CUHK Campus Dataset5

The CUHK Campus dataset [28] has images acquired by disjoint camera views in
a campus environment. The dataset comes with 1,816 persons and five camera
pairs denoted P1–P5 each of which is composed by different sensors (i.e. the
dataset has images from ten camera views). The five camera pairs have 971,
306, 107, 193 and 239 persons respectively. Each person has two images in each
camera. Other than being challenging for pose variations that occurs between
camera pairs, this dataset is the one that has the highest number of persons
collected by a single camera pair, thus it is the most representative for a real
scenario. To evaluate our method and compare it to the state-of-the-art we follow
the same protocol used in [28, 50]. Results are reported for camera pair P1 when
N = 2 images per person are considered. In this camera pair, images from the
first camera are captured from lateral view, while images from the second camera
are acquired from a frontal view or back view (see Fig. 6). All the 3,884 images
have been resized to 60 × 160. The dataset as been split into a training set
containing 485 pedestrians and a test having images for the remaining 486.

In Fig. 7 we compare the results of our method to four state-of-the-art ap-
proaches, namely, SDALF [6], TML [28], PatMatch [50] and SalMatch [50]. At
rank 1 our method performs better than all other ones by reaching a correct
recognition rate of 31.05%, which improves the performance of SalMatch [50]
by about 3%. Then, as the rank score increases our method outperforms all
the other ones and, at rank 10, it achieves a recognition rate of 68.74%. As
shown in Table 4, for the same rank SDALF [6], TML [28], PatMatch [50] and
SalMatch [50] reach a recognition rate of 30.33%, 56.07%, 41.09% and 55.67%,
respectively. Thus, for rank 10, we improve the state-of-the-art performance by
more than 13%.

5 Available at http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
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Fig. 7. Results on the CUHK02 Campus dataset (Camera P1) reported as aver-
aged CMC curves. We show our superior performance to state-of-the-art approaches:
SDALF [6], TML [28], PatMatch [50] and SalMatch [50].

Table 4. Comparison with state-of-the-art methods on the CUHK02 dataset (camera
pair P1). Best results for each rank are in boldface font.

Rank → 1 5 10 20 50 100 200 nAUC

Proposed 31.05 57.34 68.74 79.50 91.26 96.92 99.32 0.9684
SalMatch [50] 28.45 45.85 55.67 67.95 83.52 92.10 98.10 0.9338
PatMatch [50] 20.39 34.12 41.09 51.56 68.42 82.00 93.23 0.8929
TML [28] 20.00 44.02 56.07 69.47 74.51 81.64 91.69 0.9011
SDALF [6] 9.90 22.57 30.33 41.03 55.99 67.39 84.12 0.8684

From the analysis of all the reported results, we can conclude that, in general,
our method has superior performance than state-of-the-art approaches. This is
supported by the fact that we achieve the best overall performance in terms of
nAUC values for all the three considered datasets.

5 Conclusion

In this work we proposed to achieve the re-identification goal introducing a
novel algorithm to identify the salient regions of a person. This is achieved by
introducing a kernelized saliency that gives higher weights to the regions that
are in the center of the image. Then, we used the computed saliency as a weight
in a feature extraction process and combine it with other feature representations
that do not consider it. The extracted features are used in a novel pairwise-based
multiple metric learning framework. The learned metrics are finally fused to get
the distance between image pairs and to re-identify a person. The novelty of
the approach is also supported by the provided results. Our approach overall
outperforms the best state-of-the-art solutions on the three most challenging
benchmark datasets.
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